Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography
نویسندگان
چکیده
PURPOSE To compensate for reflectance variation when quantifying vessel density by optical coherence tomography angiography (OCTA). METHODS Healthy participants received 6×6-mm macular and 4.5×4.5-mm optic nerve head (ONH) angiography scans on a 70-kHz spectral-domain optical coherence tomography system. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to compute the OCTA signal. Mean reflectance projection and maximum decorrelation projection were used to create en face OCT and OCTA images. Background OCTA noise in static tissue was evaluated in the foveal avascular zone (FAZ). Vessel density was calculated from en face retinal OCTA that was binarized according to a decorrelation threshold. RESULTS The average retinal decorrelation noise in the FAZ was linearly related to the average logarithmic-scale OCT reflectance signal. Based on this relationship, a reflectance-adjusted decorrelation threshold equation was developed to filter out 97.5% of background OCTA noise. A fixed threshold was also used for comparison. The superficial vascular complex vessel density in the macula and ONH were significantly correlated with reflectance signal strength index (SSI) using the fixed threshold. This correlation was removed by using the reflectance-adjusted threshold. Reflectance compensation reduced population variation in 25 healthy eyes from 8.5% to 4.8% (coefficient of variation) in the macula and from 6.7% to 5.4% in the peripapillary region. Within-visit repeatability also improved from 4.4% to 1.8% in the macula and from 3% to 1.7% in the peripapillary region. CONCLUSIONS Compensating for reflectance variation resulted in more reliable vessel density quantification in OCTA.
منابع مشابه
Evaluation of Optical Coherence Tomography Angiography Findings in Patients with Branch Retinal Vein Occlusion
Purpose: To analyze the correlation of optical coherence tomography angiography (OCTA) findings with visual acuity (VA) in patients with branch retinal vein occlusion (BRVO). Methods: This cross-sectional study was performed on 20 eyes of 20 patients with unilateral BRVO involving the macula referred to the ophthalmology clinic of Rassoul Akram Hospital. OCTA imaging was conducted for all patie...
متن کاملMultimodal Imaging of Macular Telangiectasia Type 2: Focus on Vascular Changes Using Optical Coherence Tomography Angiography.
PURPOSE To report morphologic features of idiopathic macular telangiectasia (MacTel) type 2 by means of optical coherence tomography angiography (OCTA) and to compare these findings to fundus fluorescein angiography (FFA), fundus autofluorescence (FAF), confocal blue reflectance (CBR), and spectral-domain OCT (SD-OCT). In addition, foveal vessel density and parafoveal vascular density (PFVD), a...
متن کاملOptical Coherence Tomography Angiography of Peripapillary Retinal Blood Flow Response to Hyperoxia.
PURPOSE To measure the change in peripapillary retinal blood flow in response to hyperoxia by using optical coherence tomography (OCT) angiography. METHODS One eye of each healthy human participants (six) was scanned with a commercial high-speed (70 kHz) spectral OCT. Scans were captured twice after 10-minute exposures to normal breathing (baseline) and hyperoxia. Blood flow was detected by t...
متن کاملAutomated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy.
IMPORTANCE Macular ischemia is a key feature of diabetic retinopathy (DR). Quantification of macular ischemia has potential as a biomarker for DR. OBJECTIVE To assess the feasibility of automated quantification of capillary nonperfusion as a potential sign of macular ischemia using optical coherence tomography (OCT) angiography. DESIGN, SETTING, AND PARTICIPANTS An observational study condu...
متن کاملClinical Applications of Optical Coherence Tomography in Ophthalmology
Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases. Furtherm...
متن کامل